Global Well-posedness for Euler-boussinesq System with Critical Dissipation
نویسندگان
چکیده
In this paper we study a fractional diffusion Boussinesq model which couples the incompressible Euler equation for the velocity and a transport equation with fractional diffusion for the temperature. We prove global well-posedness results.
منابع مشابه
Well-posedness and Inviscid Limits of the Boussinesq Equations with Fractional Laplacian Dissipation
This paper is concerned with the global well-posedness and inviscid limits of several systems of Boussinesq equations with fractional dissipation. Three main results are proven. The first result assesses the global regularity of two systems of equations close to the critical 2D Boussinesq equations. This is achieved by examining their inviscid limits. The second result relates the global regula...
متن کاملGlobal Well-posedness for a Boussinesq- Navier-stokes System with Critical Dissipation
In this paper we study a fractional diffusion Boussinesq model which couples a Navier-Stokes type equation with fractional diffusion for the velocity and a transport equation for the temperature. We establish global well-posedness results with rough initial data.
متن کاملGlobal Well-posedness for the Euler-boussinesq System with Axisymmetric Data
In this paper we prove the global well-posedness for the three-dimensional EulerBoussinesq system with axisymmetric initial data without swirl. This system couples the Euler equation with a transport-diffusion equation governing the temperature.
متن کاملThe 2d Boussinesq-navier-stokes Equations with Logarithmically Supercritical Dissipation
This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special cons...
متن کاملOn Global Well-Posedness of the Lagrangian Averaged Euler Equations
We study the global well-posedness of the Lagrangian averaged Euler equations in three dimensions. We show that a necessary and sufficient condition for the global existence is that the BMO norm of the stream function is integrable in time. We also derive a sufficient condition in terms of the total variation of certain level set functions, which guarantees the global existence. Furthermore, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009